
Buletinul Stiintific al Universitatii “Politehnica” din Timisoara, ROMANIA
Seria AUTOMATICA si CALCULATOARE

PERIODICA POLITECHNICA, Transactions on AUTOMATIC CONTROL and COMPUTER SCIENCE
Vol.49 (63), 2004, ISSN 1224-600X

1

Programming Control Structures in Active Objects Model

Dorian Gorgan

Computer Science Department, Technical University of Cluj-Napoca, 15 C. Daicoviciu St, 400020 Cluj-Napoca, Romania
Phone: +40 264 401478, Fax: +40 264 194491, E-Mail: dorian.gorgan@cs.utcluj.ro, WWW: http://users.utcluj.ro/~gorgan

Abstract – Complex applications based on parallelism,
cooperation, synchronization and distribution are quite
difficult to be designed, developed, and maintained. A
potential effective solution is the active objects model. The
Active Objects Model (AOM) has been developed and
experimented in order to provide to software development
the visual programming techniques. This paper concerns
on the appropriate set of programming control structures
that support the visually manipulated techniques to
develop complex software functionalities and interactions.

Keywords: active object, visual programming, control

structures, behavior, trajectory, action.

I. INTRODUCTION

The actual programs have an evolution along the linear
address space. Each high level program instruction, and its
expended set of low level instructions, is located on such
an address position. The program position is stored into the
program counter register of the processing unit. For that
reason too, the tools such as debugger, tracer and viewer
can navigate along a linear trajectory of addresses. Even so,
the current tools do not support efficency the case of n-
dimensional parallel evolution, concurrency, cooperation,
and adaptive behavior.

Consequently, the Active Objects Model (AOM)
introduces the new concepts of trajectory and evolution
throughout the virtual space [3]. The trajectory is the
mapping of the progression around the space of application
values (e.g. program addresses, states of application object,
color space, animation space, attribute values space, etc).

Another difficult trend in application development and
particularly in software development is the visual
programming. The visual technique, based on direct
manipulation, is still a difficult purpose mainly for
ineffective graphical presentation and manipulation of the
programming concepts such as data structures, complex
entities, dynamic relationships, and control structures.
Moreover, the complex applications based on parallelism,
cooperation, synchronization and distribution are
absolutely difficult to be designed, developed, tested and
maintained.

II. ACTIVE OBJECTS MODEL

The AOM model provides the development of visual
programming techniques with the virtual location
associated to the model entities: active objects, static and
dynamic variables, behaviors, trajectories, virtual positions,
actions, rules and expressions. The active objects achieve
their functionality by a set of associated processors such as
behavior, server, presenter, and interactor. The model
evolution and dynamism is synchronized by message based
communication and bounding technique [1].

The overall research studies the AOM concepts and AOML
language (Active Objects Modeling Language) in order to
experiment the implementation of the AOM platform
layered on the Basic Software Functionality (i.e. Operating
System, Java Environment, .Net, etc.). The Basic Software
Functionality (Fig. 1) provides to the AOM platform the
support for communication, cooperation, evolution,
distribution, parallelism, hyperstructures, visualization,
navigation, visual programming techniques and animation.

The developer describes the application either as AOML
program or as AOM model in the operative memory. The
program describes by AOML language the specific
structures and evolutions and then is loaded and executed
as AOM model. The model consists of instances of active
objects, behaviors, trajectories, actions, positions, rules,
etc. Furthermore, the executable model can be saved in the
AOML form as well. The AOM platform implements the
entity structure and functionality (i.e. active objects,
behaviors, positions, etc) and mechanisms for message
based communication, synchronization, bounding, etc.

 AOM Model
AOM Language

AOM Platform

Basic Software Functionality

Fig. 1. AOM functional levels

2

III. VISUAL PROGRAMMING

A visual language manipulates visual information, supports
visual interaction, and allows programming by visual
expressions. The visual programming uses especially the
visual expressions (i.e. graphics, drawing, animations and
icons) throughout the programming process. The visual
programming environments support the spatial grammar to
built up a program.

The AOML language supports also the visual programming
paradigms: task modeling, data flow, programming control
structures, rule based programming, object orientation, and
data structure definition [2].

The data flow diagram involves control structures such as
repetition (while-do, repeat-until), iteration (for-do),
branches (if-then-else) and procedure call. The
programming control structures can be mapped onto the
AOM concepts through various modes, which are to be
exemplified in the next sections.

The paper mainly concerns on:
• what flow control structures can be directly manipulated

in visual programming;
• what is the minimum set of the flow control structures

that can support the complex and flexible functional
description;

• what flow control structures should be implemented at
the basic and physical level, and moreover at the high
and formal language level.

IV. CONTROL STRUCTURES

The structural programming involves three fundamental
control structures: sequential, alternative and repetitive,
excluding the call and jump. In AOM the control structures
may be developed at different levels of the model. For
instance, the if-then-else structure can be created at the
level of rules of one trajectory position (i.e. ETP – Explicit
Trajectory Position), at the level of trajectory by some ETP
positions, at the level of behavior, and at the level of active
object and variable entities. The level depends on the
program functionality, developer’s options, and expected
performance of the model execution.

A. Sequential Structure

The sequential structure consists of ordered execution of
the operations. An active object advances along its
trajectory through all explicit positions (excepting the case
of jump and call actions) and executes the related rules and
actions. The sequentiality is provided by two steps: the
sequence of the ETP positions on the trajectory, and the
sequence of rules at an ETP position. Therefore, a program
could be described as a sequence of actions distributed
over a set of ETP trajectory positions. In the following
program sample the behavior Bhv is a sequence of

trajectory positions ETP1-ETP4. Each position includes a
sequence of rules, and each rule is a sequence of actions.

behavior Bhv{
 position (139,98);
 type CYCLE;
 direction FORWARD;
 steps 30;
 trajectory T1{
 position (79,45);
 trjposition ETP1{
 position (9,289);
 type UNCOND;
 sequence of rules;
 },ETP2{
 position (155,51);
 type COND;
 expression EX1;
 sequence of rules;
 },ETP3{
 position (227,277);
 type ITERATED;
 expression EX2;
 sequence of rules;
 },ETP4{
 position (348,83);
 type UNCOND;
 sequence of rules;
 };
 };
};

The sequentiality could be described as well as one son tree
of the multi level complex active objects. Each object has
just one child in the tree structure (Fig. 2). The model
executes sequentially the behavior of the complex object
starting from the leaf child component, follows its parent’s
behavior, and recursively goes up to the root of the tree,
until reaches the main object’s behavior.

In AOML the correspondence for goto is the jump action,
which transfers the execution control to another position on
the same trajectory. To get back the control of execution
the call action is available. The call action invokes the
functionality describes by another local or global trajectory
position and at the end returns the control to the caller
position. The call action provides in AOM the flow control
for procedure and function. To achieve that, the call action
invokes the functionality described by an ETP position of
the current trajectory, or by another behavior. After the
completion of the call action the object continues the
current trajectory.

B. Alternative Structure

The structural languages know two types of alternative
instructions: if and case. In AOM the if functionality can be
implemented both by the rule level, and by the ETP
position level as well. In fact the if schema is just if-then
rather than if-then-else, and is equivalent of case with two

3

alternatives. The first alternative (i.e. then) is performed for
the true condition, and the second one (i.e. else) is
performed for the negated form of the same condition. The
complexity of task imposes one or another solution level.
Let us see an example through which the parameter r is set
true in the case of parameter n grater than 10, and false
otherwise:

trjposition ETP1{
 rule{
 condition{
 behavior(b1).parameter(n)>10};
 action{
 set
 behavior(b1).parameter(r),TRUE;
 };
 },
 rule{

 condition{
 behavior(b1).parameter(n)<=10};
 action{
 set
 behavior(b1).parameter(r),FALSE;
 };

 };
};

The case instruction may be implemented by a number of
ETP positions equal with the number of the instruction
branches. The expression of each ETP checks the equality

between instruction variable and the particular value of the
branch.

Example:

trjposition ETP1{
 type COND;
 expression {E == VALUE1};
 sequence of rules;
};
trjposition ETP2{
 type COND;
 expression {E == VALUE2};
 sequence of rules;
};

C. Repetitive Structure

The repetitive structure has three main forms: while, repeat
and for. Their correspondent schemas are supported by the
different basic types of the ETP structure that can be:
UNCOND – the sequence of rules embodied into the ETP

is executed unconditioned. It corresponds to the
sequential execution of instructions;

PRECOND – the rules are executed until the associated
expression is evaluated as true. The evaluation is
performed before the execution of the first rule of the
sequence. It corresponds to the repetitive structure
while-do of the structured programming;

POSTCOND – it is similar with the PRECOND type,
unless the evaluation of the expression is performed
after the execution of the rule sequence. It corresponds
to the repetitive structure do-until of the structured
programming;

COND – the sequence of rules is executed one times
whether the associated expression is evaluated as true.
It supports the implementation of the if and case
schemas.

ITERATED – the evaluation of the associated expression
returns an integer that specifies the number of
repetitive executions of the rule sequence. This type
supports the for schema of the structured
programming.

A sample of the PRECOD type in the AOML language is
as the following:

trjposition ETP2{
 type PRECOND;
 expression{
 trjposition(ETP2).positionx<50};
 rule{
 action{
 set agent(Button).presentation
 (PRES).graphics(G1).drawtext,
 "Ok pushed";
 };
 };
};

Fig. 2. Sequential flow control of the behaviors

4

V. EXPERIMENTS

The AOM model and AOML language have been
developed at the Technical University of Cluj-Napoca (Fig.
3). The AOM related projects have been implemented in
C++, Java and VRML and experienced the AOML
language, fuzzy logics (FUZZYLOG), multithreading
(DYMO), multimidia presentation (AOMIDIA),
programming paradigms (PARADIGM), and visual
techniques (VISTECH v1 and v2).

VI. CONCLUSIONS

Actually, the jump action could not be completely
eliminated at the high level structures such as behavior,
trajectory and ETP positions. It supports the transfer of the
flow control between different functional levels and scopes
(i.e. local vs. global). The decision on elimination or
keeping of the jump action is argued by the manner in
which such a schema could be directly manipulated in
visual programming at the level of the basic entities.

Conceptually the jump could be substituted only at the rule
level by a schema like if-then-else rather than if-then.
Moreover, the if-then-else schema allows the imbricate

structures. Hereby the ETP data structure is a binary tree
rather than a list, where each node is a list of rules.
Actually, the schema to advance along a trajectory is a
simple list stored in the behavior structure and the flow
control over the ETP positions is according with the if-then
structure. The while, repeat and for structures are
implemented only at the ETP level.

The consistency and appropriateness of the proposed set of
the flow control structures should be extensively checked
and argued through more practical experiments on various
programming cases.

REFERENCES

[1] “Active Object Model” AOM Documentation and Projects,
http://users.utcluj.ro/~gorgan/res /aom /aom.html

[2] D. Gorgan, “Visual Programming Techniques”. Computer Science
Education: Challenges for the New Millenium. Eds. G. van der
Veer, I.A. Letia, Ed. Casa Cartii de Stiinta. pp. 129-142, 1999.
http://users.utcluj.ro /~gorgan/res/webdocs/
repository/papers/ROC-C99P.zip.

[3] D. Gorgan, D.A. Duce, “The Notion of Trajectory in Graphical
User Interfaces”. Design, Specification and Verification of
Interactive Systems '97, M.D.Harrison, J.C.Torres (eds.),
SpringerWienNewYork (ISBN 3-211-83055-3), pp.257-272, 1997.
http://users.utcluj.ro/~gorgan/
res/webdocs/repository/papers/dsv97.zip

Fig. 3. AOM model development environment

