
1

Visual Programming Techniques

Dorian Gorgan

Dept. of Computer Science, Technical University of Cluj-Napoca
George Bari�iu 26-28, RO-3400 Cluj-Napoca

Tel. +40-64-194834 ext.165
Dorian.Gorgan@cs.utcluj.ro

http://bavaria.utcluj.ro/~gorgan

ABSTRACT. The paper emphasizes active entities based modelling of visual
programming techniques. Active Objects Model (AOM) and AGent Modelling Language
(AGML) are defined and investigated in order to develop flexible and dynamic functionality
of interactive components. Therefore the visual programming techniques, distributed
knowledge, fuzzy inferences, programming paradigms are analyzed through the concepts
and techniques provided by the AOM model. Fuzzy learning and cooperative tasks allow
the modelling of the artificial intelligence based approaches.
Keywords Active objects, rule based behaviour, visual programming, interactive
techniques, and fuzzy inference.

1 INTRODUCTION

The last few years have highlighted the importance of interactivity in distributed
applications. Especially the development of the web based applications has demanded new
interaction techniques, development methodologies adapted to various hardware and
software platforms, improved graphical user interface layout and functionality, new
languages and models to build up and navigate throughout the virtual web space.

According to this tendency the paper presents the visual programming techniques as a
feature of the Active Objects Model (AOM). The main objectives of the AOM based
research work are such as: (a) to provide a better user control on both the interface and
application entities, (b) to develop active entity based structure and functionality, (c) to
develop and investigate visual programming techniques, (d) to provide flexible ways for
navigation throughout the distributed virtual space, e.g. databases, web, virtual world, (e) to
present the active world by photorealistic graphics, (f) to investigate the distributed
knowledge modelling and cooperative tasks performing.

The paper explores the structures of the new web interactive applications and their impact
on the graphical interaction techniques. The graphical user interface concepts are briefly
presented to emphasise the requirements for new visual techniques and consequently visual
programming techniques. The AOM model is presented (Figure 1), as a possible approach
to implement the visual programming techniques. Then a few features of AOM are

2

exemplified - task modelling, flow control, rule-based modelling, object oriented, fuzzy
knowledge and fuzzy inferences, and cooperative tasks. The AOM model uses the AGML
language to describe the structure and the functionality of the virtual entities. The AOM
model has been investigated through a few implementations, but much more have to be
achieved according to the research topics and applications that finally are outlined (see
section 10).

2 INTERACTIVE APPLICATIONS

The conceptual structure of an interactive application consists of two main components -
the conceptual (functional, application) component, and the interactive (user interface,
communication) component. The same structure is suitable for any type of application such
as local, distributed, client-server, and web. Nevertheless the type of the interactive
application influences the distribution of functionality and data structures between the two
components and among modules of the computer system. Likewise the user interface can
be distributed evolving the same or complementary functionality.

Figure 1. The AOM model implementation (Visual C++ version)

3

According to the type of the interactive web applications (i.e. static HTML files, dynamic
HTML pages, Java assisted editing, and dynamic Java) the functionality of the graphical
user interface can be implemented at different levels such as client (e.g. browser, controls,
applets, ActiveX, plug-in, etc), web server (e.g. applets, HTML files, CGI, ASP, Java
Beans, etc), application server (e.g. scripts, Java programs, etc), and even database server
(e.g. stored procedures).

The AOM model has been developed in order to provide for a flexible and sound user
control over the application entities. Its concepts support the extension of compatibility
with the new software technology, e.g. web applications, Internet browsing, graphics
standards, VRML, XML, 3DXML, HTML, OpenGL, Java, ActiveX, and so on. Flexibility
is achieved through visual techniques (e.g. direct manipulation, graphical syntax editing,
visual representation of entities within the virtual space, etc). The ability of the graphical
user interface is extended by visual programming techniques, actually the rule based
behaviour developed by visual techniques.

3 GRAPHICAL USER INTERFACES

The actual interactive applications are built up around the graphical user interface or they
are users oriented. That means the flow control of the conceptual component is directed
from the graphical interface that is actually built up around the user's events (i.e. user
inputs). Therefore the user control is a key feature of the interactive applications, as well of
the web applications. The visual programming techniques assist the user control.

Conceptually the user interface consists of interface objects and interface operations. The
interface entities are connected to application objects and operations through internal
dialogue and to user through external dialogue. In distributed interfaces the interface
entities are themselves distributed too. The user interface design process uses concepts such
as dialogue independence, structural modelling, representation techniques, interaction
techniques, rapid prototyping, methodology, and control structures, see e.g. [7] and [8].

According to these concepts the AOM model proposes an active object based modelling
approach. The interface entities are active objects. Their behaviour through virtual space
models the entity's functionality.

4 ACTIVE OBJECTS MODEL

The AOM model (see e.g. [5] and [6]), has been developed in order to support: (1) flexible
and sound user control on both the interface and application entities, (2) modelling of active
entity based structure, (3) development and investigation of the visual programming
techniques, (4) virtual space navigation (e.g. throughout the web), (5) photorealistic
presentation of the model's entities (e.g. shadows, lights, hidden surfaces, textures, etc), (6)
distributed functionality (i.e. of the interface and the conceptual component, clients and
servers, etc), and (7) parallel processing (e.g. multithreads, multiagents, multiprocessors).

4

The design and the implementation of the AOM model has been achieved according to a
few structural and functional principles: (a) simple and consistent structure, (b) rule based
behaviour, (c) topological and graphical information, (d) metaphorical techniques for visual
programming paradigms, (e) dynamic, parallel, concurrent and interactive behaviour, (f)
distributed knowledge and cooperative tasks, (g) incremental development, (h) providing
for web applications, and (i) integration with web technologies.

Conceptually the model consists of active and passive entities. In [6] there is an exhaustive
presentation of the conceptual AOM model. There are two types of active entities: active
objects (called alive objects, or aliobs), and variables. The active entity has an associated
behaviour throughout the virtual space.

The passive entities are resources used by one or more active entities. There are the
following types of passive entities: behaviours, trajectories, explicit trajectory positions,
rules, expressions, actions (create, delete, instantiate, append, get, set, assign, call, jmp),
and presentations. The behaviour describes the aliob's evolution within the virtual space.
The aliob advances along the trajectory through the sequence of the explicit trajectory
positions (ETP). At each ETP the aliob processes a set of conditioned rules and actions. A
set of nine types of actions has been defined and investigated. The aliob performs its own
actions or delegates other aliobs to complete the task. The model behaves dynamically. At
runtime the aliob can change both the active and passive entities. It may create and modify
the structure and the functionality of any other entity.

The model entities have visual presentation in order to support direct manipulation based
editing and metaphorical presentation of the application. Topological information
embodied into the model's entities supports the visual techniques. Both the structure and the
behaviour of aliobs are visually developed.

5 VISUAL TECHNIQUES, LANGUAGE, AND PROGRAMMING

The notions of visual and visualization are used in different contexts both in commercial
and experimental software products. The program visualization is often used in conjunction
with the visualization of code, data, and algorithm in a static or dynamic manner, see e.g.
[8]. In graphical user interfaces the visual interaction techniques are frequently used. The
visual interaction techniques imply interactivity through direct manipulation on entities that
have a graphical presentation within the user interface. Visual language unlike textual
language allows the user to specify a program in two (or more) dimensional fashions, see
e.g. [9]. The visual programming notion means the developer or programmer uses visually
built up expressions in the programming process. The user develops by visual approaches
the semantics, and generally the structure and the functionality of the program. For
example, the syntactic forms are built by picking up the terms from a graphics scene. If the
syntactic forms and generally all program entities (i.e. statements, expressions, data
structures, flow control structures, and so on) have visual presentations, then the
programming language is a visual programming language. Finally, the visual programming
techniques are methods and tools that provide for the development, the execution and the
visualization of the program through visual techniques.

5

The AOM model develops a set of elements (i.e. behaviour, trajectory, explicit trajectory
position, rules, etc), that may be used to construct the visual programming techniques. For
instance, modelling functionality similar with control flow diagram, paradigms such as
rule-based behaviour, object oriented programming, simple and complex data structure,
state transition based programming, and machine learning techniques.

The model involves elements that provide for the implementation of the visual
programming techniques. Therefore the model is analyzed by the three features that define
the visual programming techniques - visual language, direct manipulation, and visual
programming. A few examples of the programming paradigms argue the capability of the
AOM model as visual programming environment.

6 VISUAL LANGUAGE

The visual language developed by AOM model consists of the model entities and the
relations among them. There is not an obvious one-to-one matching between elements of
programming languages and the AOM entities (e.g. such that between C++ and Java).
Actually there is equivalence between concepts. For example, the entity behaviour (Bhv) or
the entity ETP (Etp) can model the concept of procedure and function (Figure 2). The rule
and the sequence of rules (Rule) can model the sequence of instructions. The action models
the concept of statement. The evolution over the explicit positions P0, …, Pn of the
trajectory Trj models the control flow of the program. The behaviour, and in fact the
trajectory, can be linked to the aliob (e.g. A1). Also the entity aliob (e.g. A1, Ao1, Ao2, and
Ao3), and the entity variable, and their components model the concept of data structure, i.e.
table and list. Likewise, the bounding mechanism models the event-based data flow
paradigm. For example, an element of the Ao1 aliob is connected by a bound_to link to an

A1 Bhv

P1

P2

Pn

P0

Trj

Etp

Rule Ao2 Ao3
bound_to bound_from

Ao1

Figure 2. Visual language of the Active Objects Model

6

element of the Ao2 aliob. Similarly, an element of the Ao3 aliob is connected by a
bound_from link to an element of the Ao2 aliob, see e.g. [6].

The model entities have visual presentation both in the design and execution stage. The
visual language is available only in the design process. The entities are placed into the
virtual space and manipulated by the developer using their graphical presentation.

In order to develop the syntactic forms and the semantic relations the editor combines the
direct manipulation based selection and form oriented editing.

7 DIRECT MANIPULATION

There are two stages of the model development: design and execution. The first involves
the editing of the structure and behaviour of the model entities. This stage mainly implies
direct manipulation based techniques. The second stage executes the model, which has a
metaphorical presentation. The user can interact with the model in accordance with the

Figure 3. Direct manipulation techniques in the AOM model. Complex
entities may be drag and dropped from one into another model.

7

peculiar interactivity described by the behaviour of each aliob. The associated behaviour
has been described by direct manipulation in the design stage.

During the design time, the model is stopped. There are no running processors and the
entities are displayed using their design time images. The user can have multiple views of
the same model at different levels in the model object hierarchy. A modification in the
model will be reflected in all views, in order to maintain the consistence at image level. The
user also is able to edit several models in the same time. Each model will have one or more
views. The user can copy intuitively simple or complex entities by simply dragging and
dropping them into the destination model.

In the design stage the user develops by direct manipulation all entities of the model such
as aliob, variable, graphical presentation, behaviour, trajectory, expression, rule, and action.
The user may create a new entity, instantiate an already created entity, and delete any entity
and element.

Let us see an example. The expression is a basic entity in the model. Any action parameter
is specified by an expression. The bound_to and bound_from connections are defined in
terms of expressions. An expression consists of a set of logic and arithmetic operators,
together with names from the model: entity attributes, fields and constants (Figure 1). The
expression editor uses visual techniques in order to construct a valid expression. The legal
operators are picked up from a combo box, the entities are chosen from the hierarchy tree
and the result is kept in an edit field. A term in the expression can contain also an entity,
which is not yet created in the model, but it will be created during the model execution.

8 VISUAL PROGRAMMING PARADIGMS

Lets us analyse the AOM model based modelling of the programming paradigms, see e.g.
[3], [4] and [9]. Task modelling, control-flow, data-flow, rule based programming, object
orientation, data structure definition, fuzzy knowledge and cooperative tasks are a few
paradigms presented in the next sections.

Bhv
P1

P0
Pn

Sub-task 1 Sub-task n

Task Task

Sub-task 1 Sub-task n . . .

Figure 4. Modelling sequential
 sub-tasks

8

8.1 Task Modelling

Conceptually a task is decomposed into a set of sub-tasks using known methods (e.g.
GOMS, CLG, TAG, SSOA, etc). The AOM model allows the modelling of the task in
various ways. For example, a sequence of n sub-tasks can be modelled as a sequence of n
explicit positions within a trajectory (Figure 4). A set of parallel sub-tasks can be modelled
as behaviours associated to the aliob components of an aliob aggregate (Figure 5).

The AOM concepts allow various implementations of a given task decomposition scheme.
The previous task tree could be modelled at different level of AOM entities: rule, explicit
trajectory positions, trajectory, behaviour, aliob, and model. Is up to developer of
application to select the proper modelling scheme. For example, the sequence of sub-tasks
can be modelled as a sequence of rules within the same ETP.

8.2 Control-Flow

The well-known control-flow diagram (Figure 6), actually involves control structures such
as repetition (e.g. while_do, repeat_until), iteration (e.g. for_do), branching (e.g.
if_then_else, switch_case), and procedure call. The matching between the flow of control
and AOM concepts can be accomplished in various ways.

A simple modelling way consists of the using of ETP type, see e.g. [5] and [6]. The ETP
entity is defined by type (i.e. uncond, precond, postcond, cond, and iterated), and an
associated expression. The type gives indications about the execution of rules embodied
within the ETP (e.g. iterated - the evaluated expression returns a positive integer, which
specifies the number of loops the ETP executes the set of rules). In figure 6, the ETP
positions PS1, PS2, … model the diagram states S1, S2, … The condition "G < alfa" maps
onto the condition E that is embodied within the trajectory position PS1. If the expression E

Task

Sub-task 1 Sub-task n . . .

Figure 5. Modelling parallel
 sub-tasks

AoAgg

AoC1

AoC1

AoCn

AoCn

. . .

Sub-task n Sub-task 1

Task

9

is true the actions set and jmp are executed (see the EGML language in [5] and [6]). Else
the next executed trajectory position is PS2.

A direct modelling of the if_then control can be at the level of rule entity by the
conditioned actions. Actually the set of actions embodied into a rule is executed only if the
rule condition is true. Similar control structures could be modelled at upper levels in order
to control the execution of tasks and sub-tasks (see the section 8.1).

Another concept that provides for the modelling of the flow control is the aliob's state (i.e.
play, wait, stop, and pause). The state attribute describes the current aliob's state over the
associated trajectory. Any aliob can modify the another aliob's state attribute synchronously
by actions and asynchronously by the bounding mechanism.

A similar mechanism combines the data-flow and control-flow. The mechanism modifies
the passive resources which are linked to the aliob (i.e. behaviour, trajectory, ETP, etc). For
example, an aliob changes the name of another aliob's behaviour. Consequently, the
affected aliob changes the control flow of its evolution within the virtual space.

Ao2 Ao3
bound_to bound_from

Ao1

alfa beta gamma

Figure 7. Data-flow by the bounding mechanism.

Bhv

PS1

PS0

Figure 6. Modelling a control-flow diagram

trjposition PS1{
 type COND;
 expression E =
 agent(A1).attribute(G) <
 agent(B1).attribute(alfa);
 rule{
 set variable(beta),
 agent(A1).attribute(G)+1;
 jmp PS5
 }
}

PS2

PS5

G < alfa

S1

S2

beta = G+2

S5

beta = G+1

T F

10

8.3 Data-Flow

Data-flow diagrams are most commonly used to represent those dependencies in visual
programming languages, see e.g. [1], [2] and [3]. In AOM model the data flows in and out
to and from the model entities by two ways. The first method consists of the explicit set and
the implicit get actions. The second way is the bounding mechanism, see e.g. [6].

For instance, by the action

set agent(AG2).behaviour, Bhv+agent(AG1).attribute(index)

the name of behaviour of the current aliob is set to the string that concatenates the name
"Bhv" with the value of the AG1 aliob's "index" attribute.

The second approach consists of the bound_from and bound_to mechanisms (Figure 7).
The attribute alfa of the aliob Ao1 is connected to the attribute beta of the aliob Ao2. Then
the attribute gamma of the aliob Ao3 is bound_from to the same attribute beta. It is an
event-based functionality. If the attribute alfa changes its value the attribute beta
automatically changes its value too, by the bound_to mechanism. If the value of the
attribute gamma is requested by a get action it reads the value of the attribute beta through
the bound_from mechanism.

8.4 Rule Based Programming

The behaviour of the model entities is described as a set of rules. As simple definition the
rule is a conditioned sequence of actions. Only if the condition is true the sequence is
executed. The effectiveness of such a notion consists in the ability to define generic
behaviour. The pattern of behaviour may be instantiated and associated to various aliobs.
According to the generic rules new active and passive entities can be dynamically created,
instantiated and modified. For example, an aliob can change its behaviour completely
creating a new one.

In the fuzzy logic based version of the model the aliob can rationalize according to a set of
fuzzy inferences, actually fuzzy rules, see e.g. [6]. The aliobs can improve their behaviour
by collecting and enriching knowledge, and by creating new rules (see sections 8.7 and 9).

8.5 Object Oriented

The AOM model has been designed and implemented in an object oriented manner. The
model itself is an object that can be instantiated. Any entity is an object indeed. An entity
can be created, instantiated, and deleted. An instance becomes an autonomous entity. It
may inherit the structure and the behaviour of its ancestor or may change any component
element (i.e. attributes, behaviour, presentation, etc).

The aliob can be a simple or complex entity. A simple aliob does not have any aliob
component. A complex aliob, called aggregate, has a set of aliob components. Any
component can be an aggregate. Each component has its private behaviour throughout the
virtual space, but its position is relative to that of its parent aliob.

11

8.6 Data Structure Definition

The fundamental data type accepted in the AOM model are integer, float, string, Boolean,
and fuzzy. The data may be stored into the aliob's attribute and into the variable's value. The
data item may be accessed through two ways: (a) the explicit actions set, get and delete,
and (b) automatically. The bounding mechanism, and the dynamic updating of the
variable's value, and the evaluation of an expression uses the automatic access.

Data may be organized as active entity components into hierarchical and sequential
structures (Figure 8). For instance, the component variables Va1,…,Van of the active
aggregate Va model a list.

8.7 Fuzzy Knowledge and Cooperative Tasks

The aliobs have knowledge about their domain. The aliob's attributes are used to store the
knowledge. The aliobs cooperate in order to achieve a task using the private knowledge of
other aliobs. Therefore, the cooperative task is accomplished through distributed sub-tasks,
which use distributed knowledge.

There are two types of the aliob's attributes: crisp and fuzzy, see e.g. [6]. The membership
function models the value of the fuzzy attribute (Figure 9). The fuzzy attributes are accessed
through explicit actions (i.e. the actions get and set) and bounding mechanism. For example,
complex fuzzy inferences can be performed:

(if x is A1 and y is B1 then z is C1) or (if x is A2 and y is B2 then z is C2)

The arguments x, y and z are crisp values, and A1, A2, B1, B2, C1 and C2 are fuzzy
attributes. The fuzzy inference returns the crisp value z (i.e. float) that may be used by the
model entities (e.g. within fuzzy and non-fuzzy expressions).

a1 a2 an

List

Va

Va1 Va2 Van …

E1 E2 En

Figure 8. Data structure modelling. The example of a list.

12

In the AOM model the arguments of the previous inference may be the elements of different
entities. Likewise, the inference is performed by an aliob that cooperates with others, which
are the owners of the arguments. For example in the AOM model the first term of the "or"
expression is achieved by the following fuzzy expression:

agent(AGC1).attribute(C1).fuzzy(
min(agent(AGA1).attribute(A1).crisp(x), agent(AGB1).attribute(B1).crisp(y))

)

A very useful feature of the AOM model is fuzzy learning [6]. The fuzzy learning refers to the
facility of the AOM model to improve the fuzzy inferences and aliobs’ knowledge. The
model provides a set of operators and actions that allow to operate on fuzzy knowledge and to
improve the learning mechanism. Knowledge improvement is an explicit operation that adds
a knowledge quantum to an existing knowledge, i.e. fuzzy attribute, and membership
function.

The notion of knowledge quantum is
defined as an elementary membership
function w(∆w, r), where ∆w is the
maximum of the knowledge quantum.
r is a set of weights that define the
propagation rate of the knowledge
quantum to related values from the
universe of discourse. The notion of
knowledge quantum allows a
membership function to be built up
through a sequence of set actions, i.e.
within the learning process.

Another notion imposed by the
saturation phenomenon of the learning
mechanism is the forgetting operator.
The AOM model uses as forgetting
operator the normalization of
membership function. Consequently
each saturated fuzzy value is decreased
with the same capacity of assimilation
∆w.

9 IMPLEMENTATION

The AOM model has been developed in an experimental form at the Technical University
of Cluj-Napoca (Borland C++, Visual C++, and Java version), and at the Rutherford
Appleton Laboratory, UK (Visual C++, the first multi-threads based version). Being a
multithreading application, AOM is considerably consuming the system resources. In order

Figure 9. Direct manipulation based
editing of the membership function.

13

to get acceptable performance, the application must run on powerful machine (e.g. at least a
100 MHz processor, 32MB RAM memory, Windows NT).

However, the model performances are acceptable, despite of the entity name-addressing
mode used. Addressing by name offers flexibility to the model, the entity access can be
realized even from outside the process boundaries.

The graphical performances can be enhanced if techniques like OpenGL or DirectX are
used. A better version of the AOM editor should provide a manager for undo/redo
operations. The undo manager allows the user to go back along the chain of operations
performed, up to the initial model configuration.

10 RESEARCH TOPICS AND APPLICATIONS

The AOM model is intending to be a framework that supports the development and the
investigation of concepts, notions, techniques, and methodologies in the domain of
distributed interactive applications.

The previous developments and investigations argue the capability of the AOM concepts.
The model is convenient to be used in the research in the following fields of interest:

• Photorealistic presentation of animated virtual world
• Flexible behaviour of the interface objects (e.g. controls, windows)
• User control over application entities
• 3D interfaces to applications such as databases, internet navigation, scientific

visualisation, simulation, animation
• Distributed interfaces, distributed applications
• Aliob based multi agents systems
• AOM mobility throughout the internet
• Distributed task modelling
• Cooperative learning
• Fuzzy knowledge
• Aliob based authoring tools
• Visual programming techniques
• Compatibility with new technologies – standards, formats, and languages

11 CONCLUSIONS

Through its achievements the AOM model has managed to investigate and state a set of
consistent and encapsulated entities. It is a minimum set necessary to describe the
dynamical, parallel and concurrent evolution of the model. The Agent Modelling Language
provides for portability over different software and hardware platform. The language
allows the extension and compatibility with new web technology. The new tendency of
programming environments to the visual techniques and particularly to visual programming
has been emphasized since a few years. Therefore the AOM model has investigated the

14

programming paradigms in order to prove the ability of the developed concepts in this field.
Fuzzy knowledge and learning techniques has been used to model distributed knowledge
and cooperative tasks. The consistent set of actions, operators, data structures, and AGML
extension has been developed related to the fuzzy logic concepts.

In spite of the above mentioned achievements the model has to be extended and tested
through more investigations. An important deficiency is the control of user's action at
runtime. This goal is more difficult if it is an animated model within a photorealistic
presentation of the virtual world. Likewise, more programming paradigms have to be
developed such as recursiveness, management of parameters, program modularization,
definition of generic functionality, mobility over distributed systems, etc.

12 ACKNOWLEDGMENTS

Part of the work described in this paper was carried out at Rutherford Appleton Laboratory,
UK. I am grateful to Prof. David A. Duce for advising the conceptual design of the AOM
model. I thank C�t�lin Dru��, Sergiu Dunca, Sorin Sâmpl�ceanu, Ioan Velea, and Mihai
Paul who worked on the implementation and assessment of the concepts.

13 REFERENCES

1. Baroth, E., Hartsough, C. (1995) Visual Programming in the Real World, in Visual Object-
Oriented Programming, Concepts and Environments. Burnett, M., Goldberg, A., Lewis, T. (eds.)
Manning, 21-42.

2. Bird, R., Wadler, P. (1988) Introduction to Functional Programming, Prentice Hall, NY.
3. Burnett, M. (1994) A Classification System for Visual Programming Languages, IEEE Visual

Programming.
4. Glaser, H., Smedley, T. (1995) PSH - the next generation of command line interface, in

Proceedings of the 11th International Symposium on Visual Languages. VL'95. IEEE Computer
Society Press, 29-36.

5. Gorgan, D., Duce, D.A. (1997) The Notion of Trajectory in Graphical User Interfaces.
Proceedings of the DSV-IS'97 workshop, pp. 289-305, Granada, Spain, 4-6 June 1997, and in the
Design, Specification and Verification of Interactive Systems '97, Harrison, M.D., Torres, J.C.
(eds.), SpringerWienNewYork, 257-272.

6. Gorgan, D., Duce, D.A. (1997) Fuzzy Learning in Multi-Agents Based Interactive Systems.
Rutherford Appleton Laboratory, Research Report, January 1997, 1-43.

7. Hartson, H.R., and Hix, D. (1989) Human-Computer Interface Development: Concepts and
Systems for its Management. ACM Computing Surveys, Vol. 21(1), March 1989. 5-92.

8. Myers, B.A., Zanden, B.V., Dannenberg, R.B. (1990) Creating Graphical Interactive Application
Objects by Demonstration. The Garnet Compendium: Collected Papers, 1989-1990. Carnegie-
Mellon Univ., Aug. 1990. 95-114.

9. Rekers, J. (1995) Visual Languages. Course Notes. Informatics Department. Leiden University.
1-274.

