Knowledge Assessment Based on Evaluation of 3D Graphics Annotation in Lesson Context

Dorian Gorgan, Teodor Stefanut, Madalina Veres, Istvan Gabos Computer Science Department Technical University of Cluj-Napoca dorian.gorgan@cs.utcluj.ro

Research Objectives

Study the requirements and specifications for graphical pen annotation based eLearning environments

User requirements (i.e. professor, students), eLearning environment functional specifications, usability requirements, lesson structure, user interaction techniques.

□ Integrate graphical annotation techniques in eTrace eLearning Environment

Develop eTrace eLearning environment, design and implement the client-server architecture, resource management, security, annotation model, annotation persistence. Develop lessons in various domains including Computer Science, Medicine, Physics, Mathematics, Algorithms, Computer Graphics.

□ Usability evaluation for graphics annotation techniques

Design and create evaluation instruments for pen and mouse based graphics annotation; Develop test cases for graphics annotation according with usability requirements and specifications.

Usability measurement, data analysis, usability evaluation

□ Knowledge assessment using graphical annotation

Define the graphical annotation evaluation model; allow the real-time evaluation of the annotations

Collaborative working sessions based on graphical annotation Presentation sessions; interactive working sessions

Main objectives

- Alternatives to multiple choice questions based knowledge evaluation
- □ Free graphical form expressions
- □ New types of questions and answers in eLearning applications
- □ Visual free form answer provides support for
 - creativity
 - □ flexibility
 - imagination
 - artistic ability

Automatically evaluation of the annotation based answer

eTrace Platform

- eTrace eLearning Environment based on graphics annotation
- Developed at the Technical University of Cluj-Napoca (UNI-CLUJ)
- Developed through the I-TRACE Project "Interactive Tracing and Graphical Annotation in Pen-based elearning", 223434-CP-I-2005-IT-Minerva-M (2005-2007) http://users.utcluj.ro/~gorgan/res/cgis/itrace/

eTrace references:

eTrace eLearning Environment:

http://dataserver.mediogrid.utcluj.ro/adnotare/

eTrace presentation:

http://users.utcluj.ro/~gorgan/res/cgis/itrace/

Graphics annotation techniques

- 2D graphical annotation techniques on text, images, and documents
- □ 2D graphical annotation techniques for 3D objects
- □ 3D graphical annotation techniques on 3D objects

Graz, 21 November 2008

eTrace – lessons creation and management

eTrace - 2D annotations

Graz, 21 November 2008

eTrace – why using 3D objects ?

Fotorealistic presentation

eTrace – why using 3D objects ?

Detailed and global view

Graz, 21 November 2008

Graphics annotation on 3D objects

Graphics annotation on 3D objects

Different annotation attributes (cont.)

Graphics annotation on 3D objects

Graz, 21 November 2008

Graphics annotation on 3D objects - Mecanics

Graz, 21 November 2008

Graphics annotation on 3D objects - Medicine

Graz, 21 November 2008

Graphics annotation on 3D objects - Art

Graz, 21 November 2008

eTrace – Knowledge assessment

Visual evaluation

- Made by the teacher
- Based on grades
- Can be applied for every annotation
- Subjective
- Time demanding for the teacher
- Inefficient and limitative for high scale e-Learning applications

eTrace – Knowledge assessment

Automatic evaluation

- Automatically made by the system
- Instant evaluations can be implemented
- Avoid subjectivity
- Recommended for global e-Learning systems
- Can be done by comparing annotation made by students with a annotation pattern
- Not suitable for all annotation techniques

Automatically verify that the red line is inside the yellow contour and as near as possible to the points $P_1...P_n$

Main issues of 3D annotation and evaluation

- □ 3D against 2D
- □ Graphics algorithms
- 3D annotation model
- □ Annotation model along the lesson states
 - □ Creation, description
 - □ Recording
 - Execution
 - Single user/ multiple user, collaborative work, interaction devices, answer encoding etc
 - Evaluation
 - Area based
 - Gesture based
 - Pattern recognition
 - Mark computation
- Application domain
- Teaching and learning approaches

Automatic evaluation of 3D annotations - evaluation description model (1)

Contours

- Annotation inside the contour
- Annottion outside the contur
- Annotation between two contours

Example of contours drawn on the surface of 3D objects

Contours used in a bypass exercise

Graz, 21 November 2008

Automatic evaluation of 3D annotations - evaluation description model (2)

Key points constraint

Keypoints represented on the surface of 3D objects

Keypoints used in a skin-removal exercise

Graz, 21 November 2008

Automatic evaluation of 3D annotations - evaluation description model (3)

Shape pattern constraint

a) shape

b) freehand

Automatic evaluation of 3D annotations - evaluation description model (4)

□ Mark computation example

Criterion name	Criterion definition		
Inside Contour (C1)	 1 if all the annotation points are inside the contour 0 otherwise 		
Outside Contour (C2)	the % of annotation points outside the contour		
Shape pattern (S)	If the annotation is passing by a minimum distance d, $\epsilon_{n-1} < d < \epsilon_n$ the grade takes the value G_n .		
Key-points (K)	all the key points have the same importance into the K grade		
Time (T)	 should be between 3 and 5 seconds 25% penalty for every second outside the interval 		
Final mark (M)	M = (0.1*C2 + 0.4*S + 0.3*K + 0.2*T) AND (C1 = 1) AND (T > 0)		

Graz, 21 November 2008

Automatic evaluation of 3D annotations – students answers

	Student 1	Student 2	Student 3
Inside Contour (C1)	1	1	0
Outside Contour (C2)	85% (C1 = 8.5)	100% (C1 = 10)	100% (C1 = 10)
Shape pattern (S)	S = 4	S = 7	S = 8.6
Key-points (K)	K = 6.8	K = 8	K = 9
Time (T)	3s (T = 10)	6s (T = 7.5)	2s (T = 7.5)
Final mark (M)	M = 6.4	M = 7.7	M = 0 (8.64)

Graz, 21 November 2008

Conclusions

- □ Free forms of expression
- New types of questions and answers in the eLearning applications
- Visual free form answer provides support for creativity, flexibility, imagination, and artistic ability
- Annotation based interaction techniques must be designed according with the characteristics of each interaction device
- The assessment of the annotation quality has a significant impact on the quality of the answer
- □ Automatically evaluation of the annotation based answer

Future work

- □ Usability of the 3D annotation techniques
- Develop automatically techniques for knowledge assessment in graphics annotation based lessons
- Multi user sessions
- Real time communication
- Develop graphics annotation lessons in various domains
- Natural user interaction techniques
- □ Propose technical specifications for standards concerning with
 - **1.** Graphical annotation model
 - 2. User interaction techniques
 - 3. Automatically knowledge evaluation

Thanks a lot!

Dorian Gorgan, Teodor Stefanut, Madalina Veres, Istvan Gabos Computer Science Department Technical University of Cluj-Napoca dorian.gorgan@cs.utcluj.ro