

Satellite Image Processing Applications in MedioGRID

Ovidiu Mureşan, Dorian Gorgan Florin Pop, Valentin Cristea

{Ovidiu.Muresan, Dorian.Gorgan}@cs.utcluj.ro
{florinpop, valentin}@cs.pub.ro

1

30.10.2006

Outline

- Introduction
- MODIS Satellite Imagery
- Grid Image Processing in MedioGRID General Architecture
 - Data Management System
 - Command and Result Dissemination Component
- Communication and data flow in MedioGRID
- Grid Monitoring Solutions
- Experimental results
- Conclusions

Introduction

Objectives

mputer Science Department

TEHNICA

30.10.2006

- Provide a general purpose satellite image processing system for extracting relevant environmental and meteorological parameters
- Use GRID computing resources and real-time MODIS satellite imagery
- Implement fire detection and water coverage detection (used for flooded area extent estimation)
- Modular architecture
- Research institutions:
 - Universitatea Tehnică Cluj-Napoca (UTCN)
 - Universitatea Politehnica Bucureşti (UPB)
 - Universitatea Politehnica Timişoara (UPT)
 - Universitatea de Vest Timişoara (UVT)
 - iQuest Technologies (iQuest)
 - Universitatea Babeş-Bolyai Cluj-Napoca (UBB)
 - Administrația Națională de Meteorologie R.A. (ANM)

0

- Covers the entire surface of the Earth
- 36 observational channels
- 250m to 1km spatial resolution
- Data distributed by the NASA DAAC

0 EHNICA THE LINE ARCS

30.10.2006

Data Management System

- Requirements
 - Robustness
 - Efficiency
 - Transparency
- Components
 - Data Mirroring and Indexing Component
 - Realtime fetching and inxexing of MODIS data
 - Data processing operations
 - Split data granules into the composing spectral bands
 - Index associated XML data
 - Generate full color JPEG images
 - Metadata Catalog Service
 - On top of the Replica Location Service
 - Answers data queries
 - Uses OGSA-DAI
 - Data Access Component
 - Provides separate access to the MODIS data layers

Command and result dissemination component

- Integrated system for commanding GRID processing operations and result dissemination
- Creates the interface between the user and the GRID computing resources
- Should include a GIS component:
 - Integrates both topology and satellite imagery data
 - Realtime display of processing results

Communication and data flow

UNIVERSITATEA

CLUJ NAROCA

30.10.2006

Grid Monitoring Solutions

- GridICE: different aggregations and partitions of monitoring data are provided with a different abstraction level of a Grid:
 - the Virtual Organization level,
 - the Grid Operation Center level,
 - the Site Administration level and
 - the End-User level.
- **R-GMA** (Relational Grid monitoring Architecture):
 - three components: Consumers, Producers and directory service
 - part of the "Enabling Grids for E-science in Europe"
- Ganglia: toolkit for monitoring clusters and hierarchical aggregations of clusters
 - collects system status information and makes it available via a web interface.
 - Ganglia status can be subscribed to and aggregated across multiple systems.
- MonALISA (MONitoring Agents using a Large Integrated Services Architecture)
 - designed as an ensemble of autonomous multi-threaded, selfdescribing agent based subsystems which are registered as dynamic services, and are able to collaborate and cooperate in performing a wide range of information gathering and processing tasks.

IEHNICA

30.10.2006

MedioGrid Monitoring Solutions

Ganglia

- access to each node in MedioGRID cluster and
- request information about state of node: load, CPU usage, etc.

Mon*ALISA*

- Agent based support for collecting system and job data from each node in MedioGRID network.
- Centralize date and view it in Client and/or Repository.

ApMon

- APIs in C, C++, Java, Python, PerI
- Library for collect dinamic (and complet) information about jobs and systems and send it to a MonALISA database.
- Used in MedioGRID to create a "check-point" mechanism for Satellite Image Processing Applications

30.10.2006

- - The optimal performance is achieved when using 3 to 15 GridFTP parallel data streams.
 - Depending on the file size, larger values for the number of parallel connections offer better performance when transferring data over the WAN links.
 - Data transfer performance is directly influenced by the number of parallel data streams.

11

nputer Science Department

- Proposed a high-level architecture for grid-based satellite image processing
- Studied the GridFTP LAN and WAN transfer characteristics
 - Development directions
 - Integrate the system with a powerful GIS engine for efficient result dissemination
 - Implement specialized GIS tool providing for the evaluation of flood and fire evolution over time