MedioGrid Platform and Applications

Dorian Gorgan

Computer Science Department
Technical University of Cluj-Napoca
dorian.gorgan
Outline

- Objectives
- MedioGrid project
- MedioGrid infrastructure
- Satellite imagery oriented processing
- Diagrammatic process description - gProcess
- Application development
- Performance evaluation
- Conclusions
Research objectives

- Develop a research and academic Grid infrastructure
- Develop Grid based satellite imagery processing platform
- Develop environment oriented applications based on satellite imagery classification
- Services and Tools for Grid visualization
- Virtual geographical space modeling and visualization
- Performance evaluation
MedioGrid project

MedioGrid

Parallel and distributed graphical processing on Grid structure of geographical and environment data, 19CEEX-I03 (2005-2008)

The MEDIOGRID project aims to accomplish a pilot program to process the images acquired in real time from meteorological and resource satellites, in order to extract the meteorological and environment parameters that characterize the atmospheric and terrestrial state.

Project consortium:

1. Computer Science Department, Technical University of Cluj-Napoca, coordinator
2. Faculty of Geography, Babes Bolyai University, Cluj-Napoca
3. iQuest Company, Cluj-Napoca
4. National Administration of Meteorology, Bucharest
5. Computer Science Department, Politehnica University of Bucharest
6. Informatics Department, West University of Timisoara
7. Computer Science Department, Politehnica University of Timisoara
MedioGrid project

- **Main objectives**
 - Develop Grid structure to support the parallel and distributed processing of huge data *(geographical and environmental)*
 - Develop algorithms for Grid based processing of *satellite images*
 - Develop and experiment environment supervising *applications* with data extracted from satellite images
 - Model and visualize the *virtual geographical space*
MedioGrid project’ outcomes (2005-2008)

- Functional MedioGrid network (experimental Grid of 6 servers - Cluj, Timisoara, Bucharest and more than 100 workstations)
- Software applications: MedioGrid Software Platform Kernel, Image processing MODIS (NASA), Cloud detection, Vegetation classification (Greenland), Water detection (Waterland), Mineral area detection (Minerals)
- User interaction techniques for image based applications
- Diagrammatic Grid process description and scheduling for satellite image domain
- Grid and Web services based architecture
MedioGrid architecture
Functional MedioGrid layers

- Applications – Pilot Application
- MEDIOGRID - Application Framework
- MEDIOGRID - Software Platform Kernel
- Middleware: Globus
- Basic Grid Infrastructure

Data layers:
- GIS data
- Application Data
- Image data
Satellite imagery oriented processing

- Satellite images: QuickBird, Ikonos, Modis, Aster, Landsat
- Spectral signature
- Vegetation indices based cover land classification, water detection, soil composition, cloud masks, change detection.
Data repository

- Satellite image
 - Landsat
 - Massive data. E.g. One image is about 600MB
 - Seven bands, 1-7
 - Modis
 - Produced by sensors onboard the Terra and Aqua satellites
 - Covers the entire surface of the Earth
 - 36 observational channels
 - 250m to 1km spatial resolution
 - Data distributed by the NASA DAAC
- Layered on eXist (XML database)
- OGSA-DAI technology
Landsat satellite images

- Massive data. E.g. One image is about 600MB
- seven bands 1-7
 - band 1 - water body penetration
 - band 2 - green reflectance of vegetation
 - band 3 - sensitive to chlorophyll absorption, determine the vegetation types
 - band 5 – information on vegetation and soil moisture
 - band 6 - vegetation stress
 - band 7 - discriminates the mineral and rock types
- Different information is highlighted by various band weighted combinations
 - bands 4, 3, and 2
 - Classify land water boundaries and different types of vegetation
 - bands 4 (NIR), 5 (SWIR), and 3 (RED)
 - Land/water boundaries and vegetation areas
 - Water detection
gProcess – Diagrammatic Process Description
gProcess architecture

Figure 3. gProcess architecture.
Process description graph based workflow
Graph based evaluation of satellite imagery processing over Grid

Test 1 – no operator groups.

Test 2 – horizontal operator groups.

Test 3 – vertical operator groups.

<table>
<thead>
<tr>
<th>Process Description Graph Execution Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time [sec]</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>No groups</td>
</tr>
<tr>
<td>Vertical groups</td>
</tr>
<tr>
<td>Horizontal groups</td>
</tr>
</tbody>
</table>

Figure 6 Execution time (16 processing nodes).

Figure 7 Execution time (59 processing nodes).
Gond’s Water Detection Algorithm

- Gond’s water detection algorithm

- SWIR (5), Red (3) and NIR (4) spectral bands
Water detection algorithm

Pseudo colored initial Landsat image.

Samples of detected water areas.
Waterland application

On-line available Web application: http://greenland.mediogrid.utcluj.ro
Greenland application

On-line available Web application: http://greenland.mediogrid.utcluj.ro
Minerals application

The Metaliferi Mountains area presented as a false color image (Band 7 by red, band 4 by green and band 2 by blue).

Hydrothermally-altered areas.

Iron-oxides and hydroxyl-bearings minerals.
GENERIS (Grid based Environment Representation and Information Service)
Data replication
Change detection

2004

2005, with changes
Change detection

1992

2000
Satellite image classification and segmentation

Classification using decision trees

using K-means

using Vegetation indices
Remote control for graphic applications
Parallel terrain rendering
Virtual geographical space modeling
Virtual space visualization
Performance evaluation

Total Computation Time
(10 Workstations, 1500x1500 pixels)

Average Computation Time:
(Execution time/jobs number, 10 Workstations, 1500x1500 pixels)
Performance evaluation

- Execution time / job on 1 workstation:
 - 17 sec for image of 1500x1500 pixels
 - 13 min for image of 8000x8000 pixels

- Execution time / job on 10 workstations:
 - 6 sec for image of 1500x1500 pixels
 - 2.15 min for image of 8000x8000 pixels

![Graph showing average computation time](image-url)
Conclusions

Future works:

- Develop the Grid and Web services for geographical and environment applications
- Grid Semantic services over MedioService Architecture
- Geographical and Environmental Ontology and Knowledge Database
- Geographical and environmental Grid pilot applications
- Grid visualization
- Active objects based distributed modeling and processing
Many thanks. Questions

Dorian Gorgan
Computer Science Department
Technical University of Cluj-Napoca
dorian.gorgan